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A note on the energy releass rate in

quasi-static elastic crack propagntionl

by
Janes K. Knowles

Division of Engineering and Applied Science
California Institute of Techmology
Pasadena, California 91125

[EPREGIPRES }

J
Summary -
v'irhis paper considers analytical issues associated with the notion of

the energy release rate in quasi-static elastic crack propagation.

1\ Introduction - i

When a crack in a deformed elastic solid lengthens, the new free surface

created requires energy for its formation. If the crack propagation process is
slow enough to be treated as a quasi-atati;z:kébntinuum mechanical models permit
the calculation of the rate at which energy is made available for the generation
of new free surface in terms of the solution of the governing equilibrium problem
corresponding to the defornation‘of the cracked solid under given loads. <?___

The essential physical ideas involved in this calculation, as well as the

resulting formula, have been knowm for some time. One may refer, for example, to ]

the work of Atkinson and Eshelby (1], Budiansky and Rice [2], Eshelby [3,4], Rice [5]
and Sanders [6]. To make clear the most appropriate underlying mathematical assump-
tions, however, seems to be more troublesome. durtin {7] has recently undertaken

to give s precise analysis in such a way as to be valid for two-dimensional problems

ia nonlinear as well as linear elasticity. BRis arguments, however, rely on a

‘IThs results commnicated in this paper were obtained in the course of an investiga-
tion supported in part by Contract NO001l4-C-0196 with the Office of Naval Research

j in Washington, D.C.
zrhac is, if inertia effects can be neglected.
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relatively large number of assumptions, some of which pertain to properties of
the solution to the relevant boundary value problem which—ideally, at least—
should be deduced, rather than assumed.

In the present note, we consider the simplest possible case of quasi-static
elastic crack propagation in order to illustrate and clarify the purely analytical
issues involved. We treat the crack problem in anti-plane ahurl according to the
linearized theory of elasticity. The argument given here is entirely different

from, and involves substantially fewer assumptions than, that givenm in {7].

2. The crack problem

We consider a homogeneous, isotropic elastic cylinder in an equilibrium
state of anti-plane shear. The outer boundary of a cross-section of the cylinder
is a piecewise smooth simple closed curve C, while the inner boundary consists of
a line segment of length £ (the crack). With cartesian coordinates chosen as in
Figure 1, the crack is described by xz-o, Osx1 ¢ . We denote by R(L) the

region consisting of points on or inside C which do not 1lie on the crack.

According to the linearized theory of elasticity, the out-of-plane displace-

© ment u-u(xrxz) of particles in the cross-section of the cylinder is a harmonic

function:

Mzu =0 on R(L) . (2.1)

1ty 2

Here a comma followed by a subscript indicates partial differentiation with respect

to the corresponding cartesian coordinate. On the outer boundary,

]'Ant:l-ghnc shear refers to the class of deformations of a cylinder in which the

displacemsnt vector is parallel to the generators of the cylinder and independent
of axial position. For a discussion of anti-plane shear (or "Mode III" displace-
ment fields) in the theory of elasticity, see [8].
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u.-:%-f(a) on C. (2.2)

where the constant >0 1is the shear modulus of the elastic material, f
represents the given traction on C, and o 1is arc length, measured positive
counterclockwise. The derivative in (2.2) is in the direction of the unit outward

normal vector n on C. The faces of the crack are to be traction~free, so that

u'z-o at xz-Ot » 0<x1<2 . (2.3)

Further,
u 1is bounded on #(2) . (2.4)

In the model of quasi-static crack propagation envisaged here, the crack
lengthens in time by propagating to the right only; £ 1is taken to be a strictly
increasing function of the time. Without loss of generality, we may then in fact
identify £ with the time.

We assume the existence of a solution u-u(;:s;z) -u(xl.xz;z) to the
problem (2.1)-(2.4) which is defined and three times continuously differentiable
with respect to (1:_,!,) on the three-dimensional region characterized by

x€ER(L), 0<¢ S.!.o , for some fixed, positive ¢ _ such that the point (20.0)

0
lies inside C. It is further assumed that u and all of its derivatives of order
up to and including three possess limits as a point (xl,O) on the crack is ap-
proached from above, provided @ <x1 <% ., These limits are assumed to be continuous
functions of (xl,!.) for @< x; < L, Q<= 2,0 . Finally, we make analogous assump-
tions for the corresponding limits as the crack is approached from below.

Except for cases corresponding to very special choices of the loading f,

Vu 1s unbounded at both crack-tips.

SRRPORIE ¢ .




We shall first prove that the energy in R(L) associated with u ,
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defined by f
2
E(2) = [ 5-‘ [vu|“da , O<ese (2.5)
: R(L) j
is finite for each & , and satisfies ;

2E(2) = [£(0)u(x;t)do , O0<Ls2
c

0 (2.6)
It follows immediately from (2.6) that there is at most one solution of the
prescribed smoothness to the boundary value problem (2.1), (2.4), apart from an
arbitrary additive constant. The boundedness condition (2.4) of course plays a

central role in the argument leading to (2.6) and the resulting uniqueness.

Our objective is to study the so-called "energy release rate" £€(2) defined

by

¢ e(2) = [£(o)u(x;2)do-E(2) , 0<esgg . 2.7
' C

where the dot indicates differentiation with respect to £ . In particular

e = 32 (g0 . (2.8)

€(L) represents the excess of the power supplied by the external traction over
the rate of increase of stored energy, and thus may be interpreted as the rate at
wvhich energy is made available for the formation of new free surface during the

process of crack propagation. Using only the assumptions stated abovel, we shall 1

prove that

lln particular, we make no assumptions about u beyond those stated in the smoothness
hypotheses described above.




Ju

e(t) = 1im I(J*IVulzn -~ p—u,)ds , (2.9)
0 rr 2 1 an L1

wvhere I'r is a circle of radius r centered at the moving crack-tip x = L,
22-0. s is arc length on rr (increasing counter-clockwise), and n 1is the

unit normal vector on I'r vhich points away from the crack-tip; n, is the

xl-co-poncnt of n. Thus €(2) depends only on the local behavior of Vu

near the moving crack-tip (and not directly on 4 ). We shall also prove that
€(1) 20.

In order to establish these results, we need some eatimates pertaining to
the behavior of u and 4 near the crack-tips. In this connection it is neces-

sary to observe first that G satisfies

du=0 on R(2) , (2.10)
3_\.1_ =0 on C (2.11)
an » .

=0 at x,=0t , O<x <t .

82 (2.12)
These follow from (2.1)-(2.3) by differentiation with respect to £ , provided
use is made of the fact that the traction f is independent of £ . If § were
bounded at both crack-tips, and therefore on R(L) , the uniqueness result alluded
to above would imply that & =comstant on R(L) . It will turn out, however, that
i 1is in general umbounded near the moving crack-tip.

We now consider the local behavior of harmonic functions near a crack tip.
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3. Crack-tip estimates.

Let &£ be the plane slit disc described in polar coordinates by

= {(r,0)|0<rsa,-n<O<m} .

(3.1)

Further, let l'r , 0<rsa , at present be the circle of radius a centered

at the origin, and denote by Lr , 0<rsa , and Br , 0<r<a , the sets o

those points in £ which lie respectively inside and outside I'r .

Let ¢=¢(r,6) be a function defined on & with the following properties:

A. cpECz(ﬂ), and ¢ and its derivat:ivesl P and ¢ Possess limits
6+, O0<rs<a ; these limits are continous functions of r, O<r

B. ¢ is mean-square bounded on & ; i.e., there is a constant m 20

that
2—:1[1—‘__-Icp2dssm2, O<rsa, .
1“r:
1 1 -
c. cpn-i-—r-(pr-t-?-qaee 0 on & .
D. ¢g(r,tm = 0, O<r=a.

We note that ¢ has property B if ¢ 1s bounded on & .
The principal conclusions concerning functions with properties A-D
relate to the energy distribution associated with ¢ and form the basis of

snalysis to follow. The energy E(r) in Dr associated with ¢ , defined

LDerivat:l.ves with respect to r or © are indicated by subscripts without
commas.

£

as

sa .

such

(3.2)

(3.3)

(3.4)

the
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is finite and satisfies

E(r)-g%‘cptcpdszo, O<rsa.

r

Moreover,

E(r) 0 as r-+0

To prove this propositionl, we begin by setting

F(r)-[-%chplsz , O<r<a
8
r

A standard application of the divergence theorem, together with (3.3) and

(3.4), leads to
F(r) = g(a) - g(r) ,

where
3(')'1{'%'“’:"“ y 0O<r=a
T

Moreover, from (3.9), (3.8),

g' (r) = - (r)= f-%' lV(p|2d3 20 ,
T
T

l'rhe argument that follows is egsentially the same as that used in a more
general setting in [9].

(3.5)

(3.6)

(3.7)

(3.8)

(3.9

(3.10)

(3.11)

.
P
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N
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so that g(r) 1is monotone nondecreasing. It follows that - <g(0+)<m .

From (3.10),(3.11) and Schwarz's inequality, one obtains

2

g2(x) = zp' J {p:dsll *ds < -z'fg' () | ¢%ds . (3.12)
r r
r r
By (3.2) (property B),
2 2_,
g (r) Supm'rg’'(r) , O<rsa. (3.13)

Suppose first that g(0+) <0 . Then for some T, 0<r2< a , one has g(r) <0

for O<r=r Integrate (3.13) from r, to Ty where 0<rl<r2 » obtaining

2 ° 1
tog <2 s npm? [l - 1 < npn’ (3.14)
& , : [s(rl) g(rz)] Istxy)]

or

2
mpm
|8(r,)] S_L7_losr2 = . (3.15)

1

Let r1+0 to get g(rz) =0 , which is a contradiction. Next suppose that

g(0+) >0, Then g(r) >0 for 0<r5t2 for some LPE 0<r2<a . Integration

of (3.13) now gives
2

7pm
8(ry) ‘Fgg?;ﬁi » O<rp<E,

from which we conclude g(0+) =0 , again a contradiction. Thus

g{(r) >0 as r~+0

|

i
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From (3.17), (3.9), it follows that L
F(0+) = g(a)
is finite. But (see (3.5),(3.8),(3.9)),
E(r) = F(O+) -F(r)=g(r) , O<rsa; (3.18)

(3.18), (3.10) and (3.17) establish (3.6), (3.7) and the proof is complete.

4. Properties of u,i near the crack-tips. , i
Returning to the original boundary value problem (2.1)-(2.4), we suppose |

first that % is a fixed but arbitrary value of £ with 0<2< Lq - Let a be

N O

a constant such that 0<% -2a<f+2ac< !.0 , denote by A the £ -interval
(2~ a, T+ a], and note that the (moving) circle I'; I"r(l) of radius a centered at
the right crack-tip lies in the interior of the boundary curve C and never encloses

the left crack-tip, provided % lies in A . In this section we shall consider the

solution u(x;%2) and its derivative u(x,2) only for values of ¢ in the interval
A L)
With a as above, let I'r- rr_(z) O<rsa , be the circle of radius r

centered at x =0 , and let & stand for the set described by (3.1),

1 2
where r,0 are now (moving) polar coordinates centered at the right crack-tip.

=2,x

As in the preceding section, ﬂr denotes the gset of those points in &£ which

lie inside l"r s, O<r<a . Define

v(r,0;2) =u(t4rcos®, rsin8;2) , O<rsa,-ns6sn, g€p, (4.1)

and note that




v(r,0;2) = % (r,8;2) -u,1+6 . 4.2)

In view of the assumptions made on u in Section 2, v clearly has properties

A-D for each £ in A ; in particular, by (2.4), there is a constant m(%) such

i that
21'” f vz(r,e;f.)ds smz(z) , O<rsa, LE€EA . (4.3)l
rt'
14 In view of the proposition in Section 3 concerning functions with properties

A-D, it follows from (3.7), (3.5) with ¢(r,8) = v(r,6;2) that

£|Vv|2dA->0 as r-0 , RCA . (4.4) .
T
From (4.2) and the fact that u and 4 are harmonic in £ and have
vanishing first normal derivatives on the crack-faces (see (2.1)‘, (2.3), (2.9),
(2.11)), it follows that v has propefties A,C,D, for each £ in A . We show
next that v has property B (see (3.2)) for each such £ . To this end, let

2 and 2’ belong to A, with ‘%2 . Define

v(r,8;2)-v(r,0;8’)
L~-2

O<rsa, -ns0snu, £,8°€Ar, 2 $2. (4.5)

i V(r,8;2,2")=

Clearly V has properties A-D, and hence, choosing ¢=V in (3.6) and making

' use of (3.7), one has

[wWds=20, O<rsa, g,0'€r, 24¢. (4.6)

r ;
r b

The idea now 1s to let 2'+¢ with r fixed in (4.6). To carry out this limit

o face, |v|Ssmons.

R, el b2 o ok R KR~ !
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process, we first observe from (4.5) that

V(r,e;l.ll)*\'r r,9%) as 2 - , for each fixed (r,9) . .7

Moreover, from (4.5), the mean value theorem, and the smoothness properties that

v 1inherits from u through (4.1), it follows that

|v(r,8:2,2)| sM, (1) , O<rsa, -msesnm, 2,2€A, 2’2o . (4.8)

and

v (r,8;2,2)| SMy(r) , - O<r sa, -msésm, ghe€n, 2 42. 4.9)

where

M (r)= max |¥(58;N] M (r)= max |v_(r,0A)| , O<rs=sa.
1 -nsesn T2 -nsesnm T (4.10)
A€A A€

It follows that
|Wr[$H1M2- on I'r for each r, O<rsa, and for all z',zeA, IR I (4.11)

Thus the pointwise convergence in (4.7), although not necessarily uniform, is

dominated. It follows from a standard theoreml that the limit as &' +2 may be

TR AR PRI T

taken inside the integral in (4.6), yielding

[V d8=20, O<r<a, 2€A .

Iy
r

Thus

gevmr e,

lgee [10], p. 405




ds) 20, O<rsa, f€EA , (4.13)

so that the integral in (4.13) is a nonnegative, monotone nondecreasing function
of r . It follows that this integral is a bounded function of r , O<r <a ;

i.e. there i3 a constant n(%) 20 such that

2}“ f\'lzdssnz(l) , O<rs<a, 2€A . (4.14)
T

r

Thus v has property B for each £ in A. The main proposition of Section 3

may now be invoked with ¢=v ; from (3.6), (3.7) we find that

[lvﬁlsz-»O as r+0, L€A . (4.15)
B
r

We note that (4.3), (4.14) imply

fvzds'o(r) , f\?zds-o(r) ~as v+0 , 2€A . (4.16)
. :

r
r T

Finally, we observe that, since the choice of the center ¢ of the
interval A was arbitrary, each of the four limiting results (4.4), (4.15),
(4.16) holds for every £ 1in (0,2.0).

It may be remarked that a more refined argument, using more detailed
properties of v , can be used to prove that ¢ 1s actually continuous at

the moving crack-t:lpl, and not merely mean-square bounded as asserted in (4.14).

1Conc1nu:lty of the analogous physical quantity in plane strain at the moving
crack~tip is assumed in [7].
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Since (4.14) is sufficient for our purposes, we omit the proof of the continuity
of v.

As remarked earlier, Vu 1ia in general not bounded — or even mean-square
bounded — near a crack-tip. According to (4.2) and (4.14), therefore, U would
in general not be bounded near the moving crack-tip.

Analysis parallel to that given above can be carried out near the left

(fixed) crack-tip. One sets

w(r,9;2) =u(rcos 8,rsin 6;2) , (4.17)

. where r,0. are now polar coordinates centered at the origin. In contrast to

(4.2), we have
wvey (4.18)
If 1"r is a circle of radius r centered at the origin while &r is the

interior of I'r with the crack deleted, one can again show that

fwzds-O(r) ’ f!'vzds-o(r) as r+0, O<cc<yg (14.19)1
1y
r

o ”
rr

as well as

2
012
£|Vw| dA~+0 , £|Vw| dA+0 as r+0, O<<, (4.20)
T r

We omit the details.

lAgain. w can be shown to be continuous, and not merely mean-square bounded,
at the left crack-tip.
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S. Energy relesse rate.

It is clear from the local considerations of the preceding section that

the energy E(2) of (2.5) associated with the boundary value problem (2.1)-(2.4)
is finite. In order to study E(R) , we let lﬁl) ’ 1"‘(:2) be circles of radius
r, O<rsa , centered at the left and right crack-tips, respectivelyl. Let
R.r(z) be the set of those points which lie in R(%) but outside l‘il) +1‘:2) ,
O<r=<a . An application of the divergence theorem to the integral of

(|.|./2)|Vv.;|2 over R (1) , accounting for the presence of the crack and making
use of (2.1), (2.3), followed by the limit r-+0 , leads easily to the conclusion

that

(5.1)

E(L) = 3 [ #(ou(xitdo, O0<tsy,
c

as claimed in (2.6).
Since the given traction f on C 1is independent of ¢ , it follows

immediately from (5.1) that

2E(2) = [ £(0)i(x, )0 . (5.2)
c

An alternative expression for l::(!.) may be obtained from (5.2) by proceeding as .

follows. From (5.2), (2.2),

I;ere 4 1is assumed small enough to keep l'il) and l":z) inside C and to
assure that each circle encloses only one crack tip.




E(L) = [
c

-15-
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r

on the crack faces, permits one to write

(5.3)

where sr-C+ I',(:l) +I'£2) » and n 1is the unit normal on Sr , taken outward
with respect to R.r(!.). The arc lengths and integrals over I"(rl) , l'iz) are
taken counterclockwise. The divergence theorem, togethex.- with the facts that

u and u are harmonic and satisfy the free surface conditions (2.3) and (2.12)

du & 3_6
[ w3 dds= [ p3-uds . (5.4)
s S
r r
Making use of (2.11) in (5.4), we find that
fp%!ﬁds-f p2ydse [ w8y, (5.5)
S n 1) an 1‘2) n
r rl
r T
80 that (5.3) may be written in the form
2E(2) -Il(r;!.) +Iz(r,!.) (5.6)1
}

wvhere

1'l'ho representation (5.6), (5.7) for E(L) 1is the analog in anti-plane
shear of Sanders' I-integral in plane strain or plane stress (see Eq.(4) of [6]).
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3u du

Iu("”'fa)“ (;;u- Eu)ds, a=1,2 . (5.7

ré

r

Equations (5.6), (5.7) show that E(2) depends only on the behavior of u
and u near the crack-tips.

Consider first the integral I, : from (4.1) and (4.2),

2
I,=21+H, , (5.8)
where
J=J(r;l) = I(z) -ﬁ‘-’[—g% u’l - :—n (u’l)u] ds , (5.9)
rr
H, =H,(r;L) -/ z)u(vr\'r-\'rrv)ds . (5.10)
I

A direct calculation which makes use of the facts that v, v are harmonic and
Vgr 1'79 vanish at O=3:7 reveals that anzlar-o, so that the integral in

(5.10) 1is independent of r:Hz(r;z) -az(z). If one now integrates (5.10) with

respect to r over the interval 0O<r< L r1<a , omne finds.
1:1!12(!.)-'!s u-(vrv-vrv)dA . : (5.11)
f1
The Schwarz inequality now gives
r2u2¢) 5262 {f viA [ Paa+f vdaaf vida). .1t
12 5 T & 5 T 8
1 1 1"

l‘nu finiteness of the integrals on the right in (5.12) assures the existence of
the integral in (5.11).
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From (4.14) and (4.3) one finds that

[ vaasml@wrl , [ Vasmiwre? , (5.13)
5 17 % 1

r r

1 1

so that (5.12) yields

Hy(2) s2m [mz(l)f [99|%aa +n2(0) | |w|sz] . (5.14)
1?"'1 Js"1
Lettiag r1->0 in (5.14) and using (4.15), (4.4), we find
Hz(z) =0 , (5.15)
so that, from (5.8) ,
1lim Iz(r;l) =1im J(r;2) (5.16)
r+0 r-+0

As to the integral Il(r,l) ,» one shows by a similar argument based on

(4.18), (4.19) and (4.20) that

1lim I_(r;R) =0
£+0 1t (5.17)

Letting r-+0 in (5.6) and using (5.16), (5.17), and (5.8), we obtain

B(2) = 1im J(r;2)
r+0 (5.18)
wvhere J 1is given by (5.9). Note that J does not involve 4 and depends only
on the behavior of u near the moving crack-tip.

A more convenient representation for J can be found as follows. Since

by (‘01)’




sin @ , (5.19)

- 1
u’1 vrcos 0 - - Vo

one may write (5.9) as

1 ) 1
J'-Jz‘f [vr(vtcose --;vesin 0)=- v (vrcose -?vesin 6) ]1ds (5.20)

<

r

The fact that v is harmonic can be used to eliminate Ver from (5.20); integra-

tions by parts and the boundary conditions ve-O at 6=t1 then give

P'(% |Vu|2n1-u’1 ﬂ‘-) ds . (5.21)

J= Jn

K

r
r$® y

Here n 1is the unit normal on r pointing away from the crack-tip, and

n, = cos 0 is its xl-component. The integral in (5.21) is the usual J-integral

of fracture mechanics discovered by Eshelby [4] and independently by Rice [11].

As these authors have shown, and as is easily verified, J 1is independent of r.

In fact, the 1néegral

J-J(!,)-{.p.( 2 lvul?e -, B2)as (5.22)

o T T T O Y A T A AT P\ T RLATP £ TP A R VT

is independent of the path [, as long as [ 1is a curve in &(L) which begins
and ends on the faces of the crack and surrounds the right crack-tip but not the

left one. Thus (5.18) may be replaced by
E(L) =J(2) , (5.23)

with J(2) given by (5.22). In view of (5.2), (5.23) the energy release rate of

(2.7) 1s given by
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() =E(2) =J(R) (5.264)

Thus the power delivered by the external load is divided equally between the
tasks of increasing the stored energy and making energy available for crack
propagation.

Equations (5.24), (5.22) show that &(2) (and EC2)) depend only on the
local behavior of Vu near the moving crack-tip.

In order to show that &(2) 20 , it is convenient to introduce a function
&(1,.') as follows: for 0<g’ Se<iy , set

e6.1 =] £ lou(x.e )%= [Eulx,t’) do (5.25)
0 c

)
and let
P(R) = &(2,2) ; (5.26)

P(L) 1is called the potential energzl in R(L) associated with u. Moreover,

(5.1), (2.5) give

P(L) =-E(2) , (5.27)
so that

P(2)=-E(2) . (5.28)

Let 1':,1) ’ l':z) be circles of radius r centered at (0,0) and

(2,0) as before, and let 1':3) be a circle of radius r centered at (&',0) .

It follows from properties of u(x,) already established that €(2,2"), P(2)

are finite
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vhere Oct’<t . Lat a‘_(z,z') be the sat of those points in R(L) which
1lie outside rf_l) +lf_2’+rf_3) . Set

o(2,') =] B |v(x,t') |20~ [ £()u(x,2')do , O0<t <t<ty .  (5.29)
Y R 0,2 o~ c ~ 0

3 t)

The divergence theorem and (2.1) -~ (2.3) mske it possible to show that

6. (1,2') -6 (1,0 = £ |vux,) -vulx,t) |2aa

’

(2,0")
+q () 20 (2,t)) , (5.30)
where
Q (2,2°) = i [uGsst’) = u(g,2)] -:;‘“-(5,1) ds . (5.31)
. rf_l)‘+1‘:2)+l‘:3) ‘

By using the crack-tip estimates of Section 4, one can show that Qr(z.z’ )+0
as r+0 . Letting r+0 in (5.30) and noting Gt(l.,&')-» @(2,4') as >0,

we obtain

é(1,5') 26 (2,2)=P(2) , O0<2’<2. (5.32)

But

| %lv‘.g,z")lzu-[ %lvu(;s,z’)lzcm . (5.33)
R(2) R(L")

so from (5.25), (5.26), (5.33),

(L, )=6 (U 2Y=R(), O0<t <2 . (5.34)
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Combining (5.34),(5.32) gives
P(2') 2P(L) O0<'<cg , (5.35)

so that P(L) is nonincreasing with ¢ . Thus from (5.28), é(l).zo , and
from (5.24), €(2) 20 .
The inequality (5.35) may be viewed as an imstance of the minimum principle

associated with the boundary value problem (2.1)-(2.4) (the principle of minimum

potential energy).
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i Figure 1. CROSS-SECTION OF CRACKED CYLINDER
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